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1. Introduction.-The plane curve of genus .4 has a canonical senes
g9 and is mapped from the plane by the canonical adjoints into the normal
curve of genus 4, a space sextic which is the complete intersection of a
quadric and a cubic surface. If we denote a point of this quadric by the
parameters t, r of the cross generators through it the equation of this
sextic is F = (ar)3 (at)3 = 0. For geometric purposes we may define
a modular function to be any rational or irrational invariant of the form
F, bi-cubic in the digredient binary variables x, t; for transcendental
purposes it is desirable to restrict this definition by requiring further
that this invariant, regarded as a function of the normalized periods cowj
of the abelian integrals attached to the curve, be uniform.
There seems to be an unusually rich variety of geometric entities which

center about this normal curve. Some of these have received independent
investigation. It is the purpose of this series of abstracts to indicate a
number of new relations among these various entities and to connect each
with the normal sextic F. The methods employed are in the main geo-
metric. Direct algebraic attack on problems which contain nine irremov-
able constants, or moduli, is difficult. However much information is
gained by a free use of algebraic forms containing sets of variables drawn
from different domains. Both finite and infinite discontinuous groups
are utilized at various times.

2. The Figure of Two Space Cubic Curves.-White2 has introduced for
other purposes the interpretation of the form F = 0 as the incidence con-
dition of the point r of the s-pace cubic curve Ci(T) and the plane t of
the space cubic C2(t). There is dually an incidence condition of plane
r of Ci(T) and point t of C2(t), expressed by a form F= (Ar)3 (At)3 = 0.
We call the sextics of genus 4 determined by F = 0 and F = 0 reciprocal.
Each is the same covariant of degree three of the other.

3. A. Set of Four Mutually Related Rational Plane Sextics.-On each
of the cubic curves Ci(T), C2(t) regarded as a point locus there is a net of
point quadrics Ql, Q2, respectively; on each regarded as a plane locus there
is a net of quadric envelopes, Ql, QN, respectively. The net Qi cuts the
curve C2(t) inX 2 sets of six points which lie in an l@(t). An Is on a binary
domain may be visualized as the line sections of a projectively definite
(but not localized) rational plane sextic S2(t). Thus the four nets determine
the four rational plane sextics of the array
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S1(T), S2(t)
Si(T), S2(t).

Two sextics in a row of the array will be called paired sextics; two in a
column, counter sextics; and the other pairs, diagonal sextics. If any one
of these sextics be given, its I: spread out on a space cubic will determine
the other space cubic and thereby the entire set of four. The nodal
parameters of the paired sextics in the upper row are those of the ten
common chords of Ci, C2; in the lower row, those of the ten common axes
of C1, C2. The equations of the sextics are

(a a1)2 (at) (a't) (aT)3 (a'r)3 = 0, (AA')2 (AT) (A'r) (At)W (A't)3 - O,
(A A')2 (A t) (A't) (A r)I (A'r)3 - 0, (a a')2 (a T) (a'T) (ai t)3 (a't)3 - 0.

Here the coefficients of the quadratics in t or Tfurnish three line sections of
the respective sextic. The significance of the quadratic parameter appears
in 6.

4. Two Birationally Related Quartic Surfaces.-The two nets Ql, Q2 of
point quadrics on Cl, C2, respectively, are apolar to a web of quadric en-
velopes Q; similarly the nets Q,, Q2 are apolar to a web of point quadrics,
Q. The jacobians, J, J, of these respective webs are quartic envelope or
surface, respectively; the first on the ten common chords, the second on
the ten common axes of Ci, C2. If we map by means of the web Q its
space upon another space, the jacobian J, the locus of nodes of quadrics in
Q, is mapped upon a surface 2 of order 16 and class 4, the Cayley symme-
troid quartic envelope with ten tropes. The two cubic curves are mapped
upon two paired rational space sextics W,(r), R2(t) which are conjugate to
the paired rational plane sextics .31(T), S2(t), respectively, i.e., plane sec-
tions of the space sextic are apolar to line sections of the Conjugate plane
sextic. The symmetroid 2 is the locus of planes which cut the sextic Ri
in catalectic sections. Similarly the jacobian J counter to J is mapped by
the web Q upon a point symmetroid 2 counter to 2, and Ci, C2 upon
rational space sextics R&(r), R2(t), counter to Ri(r), R2(t), respectively,
and conjugate to Si(r), S2(t), respectively.

5. References.-Meyer3 has discussed the relation of J to the sextic
S2(t) and mentions the occurrence of counter sextics. Conner4 considers
the mapping from J to 2 and its connection with the paired rational sextics.
The above introduction of the tetrad of rational sextics as defined by the
sextics F, F of genus 4 is novel. Schottky,5 beginning with the abelian
theta functions of genus 4, derives a set of ten points in space which are
the nodes of a quartic surface and merely states a characteristic property
of this surface by which it can be identified with 2. The writer6 has
shown that 2 can be transformed by regular Cremona transformation
into only a finite number of projectively distinctsymmetroids. These
classes permute under the group (mod. 2) of integer transformations of the
periods of the functions of genus a. The analogous result for the plane
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rational sextic involves a subgroup of the group (mod. 2) of the periods of
the functions of genus 5. This indicatts a connection (which we seek)
of the functions of genus 4 and those of genus 5. Proceeding the other
way Wirtinger7 obtains the plane sextic of genus 4 as the locus of vertices
of diagonal triangles of a linear series gl upon a ternary quartic (p = 3).
This transition will be discussed later.

6. The Covariant Conic R(r) of the Rational Plane Sextic S2(t).-From
the existence in the net Qi of a quadratic system of cones we conclude
that the rational sextic S2(t) has a covariant conic K(r) such that the ten
nodes of S2(t) determine upon K(r) the ten pairs of nodal parameters of
the sextic Sl (t) paired with the given sextic S2(t). This theorem furnishes
the bond between ten nodes as a ternary figure and ten nodes as a binary
figure on the rational curve. The equation of the sextic in Darboux
co6rdinates referred to the norm conic K(r) is precisely that given in 3.

7. The Perspective Cubics of S2(t). The forM ( 13). We denote by
the symbol (k, 2.-.-) an algebraic form of order i1 in the variables of an
Ski, of order i2 in the variables of an Sk2, etc. Unless explicitly restricted
these sets of variables are digredient. Thus F = (ar) (at)3 is a form
(33. By polarizing F into (ari) (ar2) (ar) (at)3 and replacing the pair
of parameters rl, T2 by the point x which they determine in the plane of
K(r) we obtain the ("3) form

(7rx) (dT) (at)3
a general form of the orders indicated with nine absolute constants. For
given Tr this form determines a rational cubic envelope perspective8 to the
sextic S2(t), i.e., line t of the cubic is on point t of the sextic. The sextic
is the locus of the meets of corresponding lines of any two of the sol per-
spective cubics, and it has the equation (7rr't) (dd') (at)3 (8't)3 = 0.
Conversely given the sextic the family of perspective cubics is determined.
Each cubic r has three cusps whose parameters are given by (irIr'Ir') (dr)
(d'T) (d'r) (585)3 (5"t)3 = 0. This is F = (AT)3 (At)3 whence the cusp
locus, G C(T), is birationally general and of genus 4. The equation of the
cusp locus is the determinant of the coefficients of (7rx) (7'x) (dr) (d'r)
(551)2 (at) (5't) regarded as a form bi-quadratic in -r, t. Thus GC(r) is a
sextic whose six nodes are the points for which the first minors of the above
determinant vanish and these first minors furnish the nine linearly in-
dependent quartic adjoints of GC(r).
The curve of genus 4 has two special series g, residual with respect to

each other in the canonical series. These appear in the normal form as
the triads on the two sets of generators of the quadric containing the
sextic. One of these series on &C(r) is the triads of cusps of perspective
cubics of S2(t). The web of adjoint cubics of GC(r) is furnished by the form

(7rx) (7r'x) (7r"x) (dd') (as') ('la ) (55 f)2 (a't) (d'r) = 0,
t andT being variable with the cubic of the web. For fixed r and variable

Voi,. 7, 1921 247



MATHEMA TICS: A. B. COBLE

t we have the pencil of adjoint cubics on the cusp triad of the perspective
cubic r.
The form (7rx) (dr) (St)3 for fixed x and variable r is a pencil of binary

cubic. This pencil has two linear combinants9: a = (7rx) (7r'x) (ddl)
(55') (at)2 (a't)2 and b = (7rx) (7r'x) (dd') (55t)3. The invariants i, j of
the binary quartic a also are combinants. The invariant i is a sextic
curve d, the invariant i is b2. Hence the discriminant of a factors and the
two factors b3 + d and b3 - d furnish the equations of the cusp locus GC(r)
and the rational sextic S2(t). We conclude further that there are 12 per-
spective cubics of S2(t) with flex points at the meets of b and d. The
sextics osculate at these points with the flex tangents as common tangents.
The 12 flex points are the -branch points on GC(r) of the function t(r)
defined by F = 0. Thus a projective (but not a birational) peculiarity
of GC(r) is that the 12 branch points of one of its series g3 lie on a conic b.
The parametric line equation of the conic K(r) on which the nodes of

52(t) determine the nodal parameters of Si(r) is of degree four in the coef-
ficients of (.211 Its symbolic form is (lr7r'lr") (r"'x) (d'r) (SS')' ( ItI)3
{ (dr) (d"d"') + 2(d'r) (dd"') } = 0.
With reference to the cubic space curves Ci(T), C2(t) the point x deter-

mines an axis 1, of C1(T) on planes T1, T2; T is the third plane of C&(r) on a
point y of lx; and t a plane of C2(t) on y. Then to points x on GC(r) there
correspond axes of C, on points of C2 and to the nodes of GC(r) the six
axes of C, which are chords of C2; to points x on S2(t) there correspond
axes of C, on planes of C2, and to the nodes of S2(t) the ten common axes
of C,, C2. If x. is a node of S2(t) the form (7rxd) (dcr) (St)3 factors into
(loT) (Xot) . (qot)2 where (qot)2 is the pair of nodal parameters. The ten
forms (l0,r) (X0t) will appear later in connection with the symmetroid.
Other covariants of the (M13) form are easily interpretable with reference
to C,, C2. Thus a furnishes the four parameters t of tangents of C2 which
meet the axis lx of C1, and b determines the axes l of C, which are in the
null system of C2.
From the definition of perspective curves the line t' of the perspective

cubic (7rx) (d-r) (St')3 will cut the sextic (7r7') (St)3 (S't)3 (dd') in the
point t = t'. On forming the incidence condition of line and point,
removing the factor (tt'), and setting t' = t, we obtain

(O7rM'Ir) (56') (St)2 (S't)2 (6't)3 (d'd") (dr)
which furnishes the seven contacts'0 t of the perspective cubic with the
sextic. This is a form (71) of general type containing nine absolute con-
stants which will appear later.

1 This investigation has been pursued under the auspices of the Carnegie Institution
of,Washington, D. C.

2 H. S. White, these PROCJIZDINGS, 2, 1916 (337).
' Meyer, Apolaritdt und Rationale Curven, pp. 320-47.
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MELANOVANADITE, A NEW MINERAL FROM
MINA RAGRA, PASCO, PERU

By WALDoMAR LINDGREN
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- Communicated, March 9, 1921

Late in 1920 Mr. W. Spencer Hutchinson, Consulting Engineer for the
Vanadium Company of America, brought to my attention three specimens
of a mieral collected by him at Mina Ragra, Peru. He suspected that it
was a new mineral, and this opinion was proved correct by chemical and
optical examination. The formula is 2CaO. 3V206.2V204 and I wish to pro-
pose for it the name of Melanovanadite, in allusion to it being practically
the only vanadium mineral of a deep black color.
The mineral occurs in acicular bunches on black brecciated shale, the

individual crystals being at most 3 mm. long.
The greater thiclness of the needles is about 0.5 mm. ranging down to

0.1 and 0.01 mm. The color is black, luster almost submetallic, streak
very dark reddish brown. The hardness is 2.5 the specific gravity 3.477
at 15° C. The habit of the crystals is prismatic, parallel to c, with mon-
oclinic symmetry. The principal faces consist of a flat, striated prism,
the longer diagonal being parallel to the b axis, minor pinacoidal faces, and
usually well developed terminal faces of pyramids and smaller domes.
The crystals have a perfect cleavage parallel to (010).
Under the microscope the crystals remain black except in very thin

prisms which are translucent with brown color.
Flat cleavage pieces parallel to the clinopinacoid only become trans-

lucent when the thickness is about 0.003 mmn. and then show maxipum ex-
tinction of about 15 °. Resting on the prism (100) the crystals become
brown translucent with a thickness of about 0.03 mm. and then show lower
extinctions of 120 to 13°, while these resting more nearly on the orthopin-
acoid extinguish at lower angles. The perfect cleavage being perpen-

1 The ending "vanadite" is an obsolete form of "vanadinite," but there can scarcely
be any objection to using this form in the present case.
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